Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Microbiol Spectr ; : e0407323, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567975

RESUMO

Antigen-based rapid diagnostic tests (Ag-RDTs) were widely deployed to enhance SARS-CoV-2 testing capacity during the COVID-19 pandemic. Consistent with national guidance for low prevalence settings, positive Ag-RDTs were confirmed using nucleic acid amplification tests (NAATs) to avoid false positive results. However, increasing demands for positive Ag-RDT confirmation competed with other testing priorities in clinical laboratories. This work hypothesized that real-time RT-PCR without nucleic acid extraction (NAE) would be sufficiently sensitive to support positive Ag-RDT confirmation. Ag-RDT and NAAT results from community-based asymptomatic testing sites prior to the omicron variant wave were compared to calculate the weekly false positive rate (FPR) and false detection rate (FDR). Real-time RT-PCR was compared with and without NAE using 752 specimens previously tested positive for SARS-CoV-2 using commercial NAATs and 344 specimens from Ag-RDT-positive individuals. The impact of SARS-CoV-2 prevalence on laboratory resources required to sustain Ag-RDT confirmation was modeled for the RT-PCR with and without NAE. Overall, FPR was low [0.07% (222/330,763)] in asymptomatic testing sites, but FDR was high [30.7% (222/724)]. When RT-PCR was compared with and without NAE, 100% concordance was obtained with NAAT-positive specimens, including those from Ag-RDT-positive individuals. NAE-free RT-PCR significantly reduced time to results, human resources, and overall costs. A 30.7% FDR reaffirms the need for NAAT-based confirmation of positive Ag-RDT results during low SARS-CoV-2 prevalence. NAE-free RT-PCR was shown to be a simple and cost-sparing NAAT-based solution for positive Ag-RDT confirmation, and its implementation supported data-driven broader Ag-RDT deployment into communities, workplaces, and households. IMPORTANCE: Rapid antigen testing for SARS-CoV-2 was widely deployed during the COVID-19 pandemic. In settings of low prevalence, national guidance recommends that positive antigen test results be confirmed with molecular testing. Given the high testing burden on clinical laboratories during the COVID-19 pandemic, the high volume of positive antigen tests submitted for confirmatory testing posed challenges for laboratory workflow. This study demonstrated that a simple PCR method without prior nucleic acid purification is an accurate and cost-effective solution for positive rapid antigen test confirmation. Implementing this method allowed molecular confirmatory testing for positive antigen tests to be sustained as antigen testing was expanded into large populations such as workplaces, schools, and households.

2.
Vaccine ; 42(7): 1768-1776, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38368226

RESUMO

BACKGROUND: Two prefusion F protein-based vaccines, Arexvy and Abrysvo, have been approved by Health Canada for protecting older adults against respiratory syncytial virus (RSV)-associated lower respiratory tract disease. We estimated the health benefits and cost-effectiveness of these vaccines under a publicly funded single-dose vaccination program in Ontario that targets residents of long-term care homes (LTCHs). Additionally, we evaluated an extended program that broadens vaccination to include community-dwelling older adults. METHODS: A discrete-event simulation model was parameterised with the burden of RSV disease including outpatient care, hospitalisation, and death among adults aged 60 years or older in Ontario, Canada. Accounting for direct and indirect costs (in 2023 Canadian dollars) associated with RSV-related outcomes, we calculated the net monetary benefit using quality-adjusted life-year (QALY) gained, and determined the range of price-per-dose (PPD) for vaccination programs to be cost-effective from both healthcare and societal perspectives over two RSV seasons. The incremental cost-effectiveness ratio (ICER) was calculated to estimate the additional costs required to gain one QALY. RESULTS: Using a willingness-to-pay of $50,000 per QALY gained, we found that vaccinating 90% of residents in LTCHs with Arexvy would be cost-effective from a societal perspective for a PPD up to $163, producing a mean ICER value of $49,984 (95% CI: $47,539 to $52,704) per QALY gained with a two-year budget impact of $463,468 per 100,000 older adults. The reduction of hospitalizations was estimated at 7.0% compared to the no-vaccination scenario. Extending the program to include community-dwelling older adults with a 74% coverage akin to influenza vaccination, Arexvy remains cost-effective for a PPD up to $139, with a mean ICER value of $49,698 (95% CI: 48,022 to 51,388) per QALY gained and a two-year budget impact of $8.63 million. Compared to the no-vaccination scenario, the extended program resulted in a 57.3% reduction in RSV-related hospitalisations. CONCLUSIONS: Vaccinating residents of LTCHs against RSV disease would be cost-effective depending on PPD; extending the program to community-dwelling older adults would provide substantial health benefits, averting significant direct healthcare costs and productivity losses.


Assuntos
Doenças Transmissíveis , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Vacinas , Vacinas Virais , Humanos , Idoso , Análise Custo-Benefício , Ontário , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinação , Anos de Vida Ajustados por Qualidade de Vida
3.
Microbiol Spectr ; 11(6): e0277223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37962351

RESUMO

IMPORTANCE: In hospitals during the COVID-19 pandemic, laboratory testing was important to reduce SARS-CoV-2 transmissions, while facilitating patient flow in the emergency department and pre-operative settings, and allowing for the safe return to work of exposed healthcare workers. Delayed test results from laboratory nucleic acid amplification tests (NAATs) posed a barrier to maximizing efficient patient flow and minimizing staffing shortages. This quality improvement project sought to evaluate the analytical and clinical performance of the Lucira Check-It COVID-19 Test, a point-of-care test that used NAAT technology, in the perioperative setting, emergency department, and community testing sites. We found the Lucira Check-It to have comparable performance to laboratory NAATs. It can be employed with little training for specimen collection, processing, and interpretation, and at a cost justifiable from the resources saved from avoiding sample transport and laboratory testing.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Técnicas de Laboratório Clínico/métodos , Teste para COVID-19 , Técnicas de Diagnóstico Molecular/métodos , Pandemias , Sensibilidade e Especificidade
4.
Microbiol Spectr ; 11(6): e0076123, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37815347

RESUMO

IMPORTANCE: Molecular tests like polymerase chain reaction were widely used during the COVID-19 pandemic but as the pandemic evolved, so did SARS-CoV-2. This virus acquired mutations, prompting concerns that mutations could compromise molecular test results and be falsely negative. While some manufacturers may have in-house programs for monitoring mutations that could impact their assay performance, it is important to promptly report mutations in circulating viral strains that could adversely impact a diagnostic test result. However, commercial test target sites are proprietary, making independent monitoring difficult. In this study, SARS-CoV-2 test target sites were sequenced to monitor and assess mutations impact, and 29 novel mutations impacting SARS-CoV-2 detection were identified. This framework for molecular test target site quality assurance could be adapted to any molecular test, ensuring accurate diagnostic test results and disease diagnoses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Teste para COVID-19 , Pandemias , Técnicas de Laboratório Clínico/métodos , Técnicas de Amplificação de Ácido Nucleico
5.
Open Forum Infect Dis ; 10(7): ofad315, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37441353

RESUMO

Background: Respiratory syncytial virus (RSV) disease in older adults is undercharacterized. To help inform future immunization policies, this study aimed to describe the disease burden in Canadian adults aged ≥50 years hospitalized with RSV. Methods: Using administrative data and nasopharyngeal swabs collected from active surveillance among adults aged ≥50 years hospitalized with an acute respiratory illness (ARI) during the 2012-2013, 2013-2014, and 2014-2015 influenza seasons, RSV was identified using a respiratory virus multiplex polymerase chain reaction test to describe the associated disease burden, incidence, and healthcare costs. Results: Of 7797 patients tested, 371 (4.8%) were RSV positive (2.2% RSV-A and 2.6% RSV-B). RSV prevalence varied by season from 4.2% to 6.2%. Respiratory virus coinfection was observed in 11.6% (43/371) of RSV cases, with influenza A being the most common. RSV hospitalization rates varied between seasons and increased with age, from 8-12 per 100 000 population in adults aged 50-59 years to 174-487 per 100 000 in adults aged ≥80 years. The median age of RSV cases was 74.9 years, 63.7% were female, and 98.1% of cases had ≥1 comorbidity. Among RSV cases, the mean length of hospital stay was 10.6 days, 13.7% were admitted to the intensive care unit, 6.4% required mechanical ventilation, and 6.1% died. The mean cost per RSV case was $13 602 (Canadian dollars) but varied by age and Canadian province. Conclusions: This study adds to the growing literature on adult RSV burden by showing considerable morbidity, mortality, and healthcare costs in hospitalized adults aged ≥50 years with ARIs such as influenza.

6.
Front Public Health ; 11: 1142602, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181684

RESUMO

Introduction: After the initial onset of the SARS-CoV-2 pandemic, the government of Canada and provincial health authorities imposed restrictive policies to limit virus transmission and mitigate disease burden. In this study, the pandemic implications in the Canadian province of Nova Scotia (NS) were evaluated as a function of the movement of people and governmental restrictions during successive SARS-CoV-2 variant waves (i.e., Alpha through Omicron). Methods: Publicly available data obtained from community mobility reports (Google), the Bank of Canada Stringency Index, the "COVID-19 Tracker" service, including cases, hospitalizations, deaths, and vaccines, population mobility trends, and governmental response data were used to relate the effectiveness of policies in controlling movement and containing multiple waves of SARS-CoV-2. Results: Our results indicate that the SARS-CoV-2 pandemic inflicted low burden in NS in the initial 2 years of the pandemic. In this period, we identified reduced mobility patterns in the population. We also observed a negative correlation between public transport (-0.78), workplace (-0.69), retail and recreation (-0.68) and governmental restrictions, indicating a tight governmental control of these movement patterns. During the initial 2 years, governmental restrictions were high and the movement of people low, characterizing a 'seek-and-destroy' approach. Following this phase, the highly transmissible Omicron (B.1.1.529) variant began circulating in NS at the end of the second year, leading to increased cases, hospitalizations, and deaths. During this Omicron period, unsustainable governmental restrictions and waning public adherence led to increased population mobility, despite increased transmissibility (26.41-fold increase) and lethality (9.62-fold increase) of the novel variant. Discussion: These findings suggest that the low initial burden caused by the SARS-CoV-2 pandemic was likely a result of enhanced restrictions to contain the movement of people and consequently, the spread of the disease. Easing public health restrictions (as measured by a decline in the BOC index) during periods of high transmissibility of circulating COVID-19 variants contributed to community spread, despite high levels of immunization in NS.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Nova Escócia/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis
7.
Sci Total Environ ; 889: 164261, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201817

RESUMO

A multiplex quantitative reverse transcription polymerase chain reaction (RT-qPCR)-based method was designed for the simultaneous detection of influenza A, SARS-CoV-2, respiratory syncytial virus, and measles virus. The performance of the multiplex assay was compared to four monoplex assays for relative quantification using standard quantification curves. Results showed that the multiplex assay had comparable linearity and analytical sensitivity to the monoplex assays, and the quantification parameters of both assays demonstrated minimal differences. Viral reporting recommendations for the multiplex method were estimated based on the corresponding limit of quantification (LOQ) and the limit of detection at 95 % confidence interval (LOD) values for each viral target. The LOQ was determined by the lowest nominal RNA concentrations where %CV values were ≤35 %. Corresponding LOD values for each viral target were between 15 and 25 gene copies per reaction (GC/rxn), and LOQ values were within 10 to 15 GC/rxn. The detection performance of a new multiplex assay was validated in the field by collecting composite wastewater samples from a local treatment facility and passive samples from three sewer shed locations. Results indicated that the assay could accurately estimate viral loads from various sample types, with samples collected from passive samplers showing a greater range of detectable viral concentrations than composite wastewater samples. This suggests that the sensitivity of the multiplex method may be improved when paired with more sensitive sampling methods. Laboratory and field results demonstrate the robustness and sensitivity of the multiplex assay and its applicability to detect the relative abundance of four viral targets among wastewater samples. Conventional monoplex RT-qPCR assays are suitable for diagnosing viral infections. However, multiplex analysis using wastewater provides a fast and cost-effective way to monitor viral diseases in a population or environment.


Assuntos
COVID-19 , Influenza Humana , Sarampo , Viroses , Humanos , Vírus Sinciciais Respiratórios , SARS-CoV-2 , Águas Residuárias , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase Multiplex/métodos
8.
Microbiol Spectr ; : e0164822, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36790177

RESUMO

Pending antibiotic susceptibility results, vancomycin is often used for bloodstream infections (BSIs) to ensure treatment of methicillin-resistant Staphylococcus aureus (MRSA). As rapid discrimination of methicillin-susceptible S. aureus (MSSA) from MRSA in BSIs could decrease vancomycin use and allow early optimization of beta-lactam therapy, this study evaluated the impact of the use of rapid molecular testing for MSSA and MRSA coupled with an antimicrobial stewardship program (ASP) intervention. Between January and July 2020, the Cepheid Xpert MRSA/SA blood culture assay was performed on blood cultures with Gram-positive cocci in clusters that were identified as S. aureus using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The ASP team member then consulted with the treating physician. The time to optimal therapy (TTOT) and clinical outcomes, including length of hospital stay (LOS), were compared between the intervention (n = 29) and historical (n = 27) cohorts. TTOT was defined as the time from the first blood culture draw to the use of appropriately dosed antistaphylococcal beta-lactam monotherapy without vancomycin. Molecular testing significantly reduced the median time to MSSA and MRSA discrimination to 7.8 h, compared to 24.3 h with culture-based methods (P < 0.001). Compared to the control group, the median TTOT in the ASP intervention group was significantly shorter (P = 0.041) at 38.0 h (versus 50.1 h). Rapid discrimination between MRSA and MSSA using molecular testing, paired with an ASP intervention, significantly reduced the TTOT in patients with MSSA BSIs. IMPORTANCE Our research shows that time to optimal antibiotic treatment for serious bloodstream infections can be improved with rapid molecular sensitivity testing and feedback to prescribers. This can be implemented in laboratories without full microbiology services or training to improve patient outcomes by improving antimicrobial use.

9.
Microb Genom ; 9(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748616

RESUMO

Pathogen genomics is a critical tool for public health surveillance, infection control, outbreak investigations as well as research. In order to make use of pathogen genomics data, they must be interpreted using contextual data (metadata). Contextual data include sample metadata, laboratory methods, patient demographics, clinical outcomes and epidemiological information. However, the variability in how contextual information is captured by different authorities and how it is encoded in different databases poses challenges for data interpretation, integration and their use/re-use. The DataHarmonizer is a template-driven spreadsheet application for harmonizing, validating and transforming genomics contextual data into submission-ready formats for public or private repositories. The tool's web browser-based JavaScript environment enables validation and its offline functionality and local installation increases data security. The DataHarmonizer was developed to address the data sharing needs that arose during the COVID-19 pandemic, and was used by members of the Canadian COVID Genomics Network (CanCOGeN) to harmonize SARS-CoV-2 contextual data for national surveillance and for public repository submission. In order to support coordination of international surveillance efforts, we have partnered with the Public Health Alliance for Genomic Epidemiology to also provide a template conforming to its SARS-CoV-2 contextual data specification for use worldwide. Templates are also being developed for One Health and foodborne pathogens. Overall, the DataHarmonizer tool improves the effectiveness and fidelity of contextual data capture as well as its subsequent usability. Harmonization of contextual information across authorities, platforms and systems globally improves interoperability and reusability of data for concerted public health and research initiatives to fight the current pandemic and future public health emergencies. While initially developed for the COVID-19 pandemic, its expansion to other data management applications and pathogens is already underway.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias , SARS-CoV-2/genética , Canadá , Genômica/métodos
10.
J Clin Virol ; 159: 105356, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36608619

RESUMO

BACKGROUND: Mpox (formerly monkeypox) is an emerging zoonotic disease of public health concern that presents as a rash mimicking other common viral exanthems. Unlike traditional testing algorithms relying on several assays, the BioFire FilmArray meningitis/encephalitis (ME) panel simultaneously detects common viruses causing rashes; however, Biofire ME is only licensed for testing on cerebral spinal fluid. OBJECTIVES: This study evaluated use of the Biofire ME panel for detection and discrimination of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), varicella zoster virus (VZV), human herpesviruses type 6 (HHV-6), enteroviruses (EVs), and human paraechoviruses (HPeVs) from a dermal or mucocutaneous swabs collected in universal transport media (UTM). STUDY DESIGN: Results of the BioFire ME panel were compared against methods used during clinical testing. Ten-fold serial dilutions in UTM of cultured viruses were used to compare analytical sensitivity, and analytical specificity was assessed using panels of microorganisms in UTM. Clinical sensitivity and specificity were assessed using 20 positive specimens each for HHV-1, HHV-2, HHV-6, VZV, EVs, and HPeV, as well as 35 known negative specimens that included 15 mpox-positive specimens. RESULTS: Biofire ME was as sensitive as comparator methods, and correctly discriminated all HSV-1, HSV-2, VZV, HHV-6, EVs, and HPeVs from mpox and mpox-mimickers. Cross-reaction between EV and rhinoviruses A, B, and C were noted in the specificity panel. CONCLUSIONS: Swabs in UTM collected for mpox testing are suitable for use on the Biofire ME panel, allowing more streamlined diagnostic testing for viral exanthems in patients under investigation for mpox infection.


Assuntos
Encefalite , Herpesvirus Humano 1 , Herpesvirus Humano 6 , Meningite , Viroses , Vírus , Humanos , Encefalite/etiologia , Herpesvirus Humano 2 , Herpesvirus Humano 3 , Viroses/diagnóstico
11.
Emerg Infect Dis ; 29(1): 175-178, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573611

RESUMO

Whole blood is the optimal specimen for anaplasmosis diagnosis but might not be available in all cases. We PCR tested serum samples collected in Canada for Anaplasma serology and found 84.8%-95.8% sensitivity and 2.8 average cycle threshold elevation. Serum can be acceptable for detecting Anaplasma spp. when whole blood is unavailable.


Assuntos
Anaplasma phagocytophilum , Anaplasmose , Animais , Humanos , Anaplasmose/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real , Anaplasma phagocytophilum/genética , Canadá/epidemiologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-36483428

RESUMO

Objective: To identify preventable factors that contribute to the cross transmission of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) to patients in healthcare facilities. Design: A case-control study was conducted among inpatients on a coronavirus disease 2019 (COVID-19) outbreak unit. Setting: This study was conducted in a medical-surgical unit of a tertiary-care hospital in Nova Scotia in May 2021. Patients: Patients hospitalized on the unit for at least 12 hours and healthcare workers (HCW) working on the unit within 2 weeks of outbreak declaration were included. Methods: Risk factors for SARS-CoV-2 infection were analyzed using simple and multiple logistic regression. Whole-genome sequencing (WGS) was performed to identify SARS-CoV-2 strain relatedness. Network analysis was used to describe patient accommodation. Results: SARS-CoV-2 infections were identified in 21 patients (29.6%) and 11 HCWs (6.6%). WGS data revealed 4 distinct clades of related sequences. Several factors likely contributed to the outbreak, including failure to identify SARS-CoV-2, a largely incomplete or unvaccinated population, and patient wandering behaviors. The most significant risk factor for SARS-CoV-2 infection was room sharing with an infectious patient, which was the only factor that remained statistically significant following multivariate analysis (odds ratio [OR], 9.2l; 95% confidence interval [CI], 2.04-41.67; P = .004). Conclusions: This outbreak likely resulted from admission of 2 patients with COVID-19, with subsequent transmissions to 17 patients and 11 staff. WGS and bioinformatics analyses were critical to identifying previously unrecognized nosocomial transmissions of SARS-CoV-2. This study supports strategies to reduce nosocomial transmissions of SARS-CoV-2, such as single-patient rooms, promotion of COVID-19 vaccination, and infection prevention and control measures including management of wandering behaviors.

13.
Microbiol Spectr ; 10(4): e0063922, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35863036

RESUMO

Antigen-based rapid diagnostic tests (Ag-RDTs) have been widely used for the detection of SARS-CoV-2 during the coronavirus disease 2019 (COVID-19) pandemic. In settings of low disease prevalence, such as asymptomatic community testing, national guidelines recommend confirmation of positive Ag-RDT results with a nucleic acid amplification test (NAAT). This often requires patients to be recalled for repeat specimen recollection and subsequent testing in reference laboratories. This project assessed the use of a point-of-care molecular NAAT for SARS-CoV-2 detection (i.e., ID NOW), which was performed on-site at a volunteer-led asymptomatic community testing site on the residual test buffer (RTB) from positive Ag-RDTs. The ID NOW NAAT assay was performed on RTB from two Ag-RDTs: the Abbott Panbio and BTNX Rapid Response assays. Results of ID NOW were compared to real-time RT-PCR at a reference laboratory. Along with investigations into the clinical performance of ID NOW on RTB, analytical specificity was assessed with a panel of various respiratory organisms. Of the Ag-RDTs results evaluated, all 354 Ag-RDTs results characterized as true positives by RT-PCR were accurately identified with ID NOW testing of RTB. No SARS-CoV-2 detections by ID NOW were observed from 10 specimens characterized as false-positive Ag-RDTs, or from contrived specimens with various respiratory organisms. The use of on-site molecular testing on RTB provides a suitable option for rapid confirmatory testing of positive Ag-RDTs, thereby obviating the need for specimen recollection for molecular testing at local reference laboratories. IMPORTANCE During the COVID-19 pandemic, rapid antigen tests have been widely used for the detection of SARS-CoV-2. These simple devices allow rapid test results. However, false-positive results may occur. As such, individuals with positive rapid tests often must return to testing centers to have a second swab collected, which is then transported to a specialized laboratory for confirmation using molecular tests. As an alternative to requiring a repeat visit and a prolonged turn-around time for result confirmation, this project evaluated whether the leftover material from rapid antigen tests could be confirmed directly on a portable point-of-care molecular instrument. Using this approach, molecular confirmation of positive antigen tests could be performed in less than 15 min, and the results were equivalent to laboratory-based confirmation. This procedure eliminates the need for individuals to return to testing centers following a positive rapid antigen test and ensures accurate antigen test results through on-site confirmation.


Assuntos
COVID-19 , Pandemias , COVID-19/diagnóstico , Humanos , Técnicas de Diagnóstico Molecular/métodos , Sistemas Automatizados de Assistência Junto ao Leito , SARS-CoV-2/genética , Sensibilidade e Especificidade
14.
J Med Microbiol ; 71(6)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35671206

RESUMO

The world has experienced several waves of SARS-CoV-2 variants of concern (VoCs) throughout the COVID-19 pandemic since the first cases in December 2019. The Omicron VoC has increased transmission, compared to its predecessors, and can present with sore throat and other cold-like symptoms. Given the predominance of throat symptoms, and previous work demonstrating better sensitivity using antigen-based rapid detection tests when a throat swab is included in the standard nasal sampling, this quality improvement project sought to ensure ongoing suitability of both combined oropharyngeal/nares (OPN) and nasopharyngeal (NP) swab sampling used throughout the pandemic. Consenting participants meeting Public Health testing criteria (mostly symptomatic or a close contact of a known case) were enrolled, and paired NP and OPN swabs were subjected to nucleic acid amplification testing (NAAT). Comparing paired specimens from 392 participants sensitivity of NP swabs was 89.1 % (95 % CI, 78.8-94.9), and that of OPN was 98.4 % (95 % CI: 90.9->99.9) (P-value 0.052). This project demonstrated that both NP and combined OPN swabs detected the Omicron variant with similar sensitivity by NAAT, supporting the continued use of either swab collection for SARS-CoV-2 molecular detection.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Nasofaringe , Pandemias , SARS-CoV-2/genética , Sensibilidade e Especificidade , Manejo de Espécimes
15.
Microbiol Spectr ; 10(4): e0021722, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35762772

RESUMO

The COVID-19 pandemic has been hallmarked by several waves of variants of concern (VoCs), each with novel challenges. Currently, the highly transmissible Omicron VoC is predominant worldwide, and sore throat is common, among other cold-like symptoms. Anecdotes on social media have suggested that sampling one's throat can increase the sensitivity for Omicron detection by antigen-based rapid testing devices (Ag-RDTs). This work aimed to improve the local testing strategy and determine whether the sensitivity of Ag-RDTs designed for nasal sampling is altered with the use of self-administered throat swabs in self-perceived asymptomatic individuals. This investigation used a common Ag-RDT (i.e., Abbott Panbio COVID-19 Ag rapid test device) to compare three sampling sites: nasal swab, throat swab, and combined nasal/throat. All Ag-RDT results were confirmed with molecular testing from residual test buffer. Compared to reverse transcriptase PCR (RT-PCR), samples from nasal or throat swabs each detected 64.5% of SARS-CoV-2 cases; however, combining the contributions of each swab increased the positive percent agreement (PPA) with RT-PCR to 88.7%. This trend was also evident with the Rapid Response Ag-RDT (BTNX), which uses more flexible swabs than does the Panbio. When nasal swab collection was compared to paired sampling of the nose/throat using a single swab with the Panbio Ag-RDT, the PPAs were 68.4% and 81.6%, respectively. No false-positive results were observed with nasal, throat, or combined nasal/throat sampling. Self-administered throat and nasal/throat swabs both had >90% acceptability. These findings support the use of self-collected combined nasal/throat sampling for Ag-RDT-based SARS-CoV-2 detection in self-perceived asymptomatic individuals. IMPORTANCE This quality project demonstrates that combining the results of nasal and throat swabs or using a combined single swab of the throat and nares resulted in increased detection of SARS-CoV-2 using a rapid antigen test, in an asymptomatic population. Importantly, no false positives were detected, and over 90% of people were willing to perform the combination swab. These types of projects are instrumental in informing local practices to improve testing strategies. These data support the option of using a combined nasal/throat swab in our local setting to enhance the detection of Omicron.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Pandemias , Faringe , Sensibilidade e Especificidade
16.
Emerg Infect Dis ; 28(6): 1292-1294, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35608954

RESUMO

In July 2021, a PCR-confirmed case of locally acquired Babesia microti infection was reported in Atlantic Canada. Clinical features were consistent with babesiosis and resolved after treatment. In a region where Lyme disease and anaplasmosis are endemic, the occurrence of babesiosis emphasizes the need to enhance surveillance of tickborne infections.


Assuntos
Anaplasma phagocytophilum , Anaplasmose , Babesia microti , Babesiose , Borrelia burgdorferi , Ixodes , Doença de Lyme , Anaplasmose/diagnóstico , Anaplasmose/tratamento farmacológico , Anaplasmose/epidemiologia , Animais , Babesiose/diagnóstico , Babesiose/tratamento farmacológico , Babesiose/epidemiologia , Canadá/epidemiologia , Doença de Lyme/diagnóstico , Doença de Lyme/epidemiologia
17.
Vaccine ; 40(18): 2635-2646, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35315326

RESUMO

OBJECTIVE(S): In the context of age- and risk-based pneumococcal vaccine recommendations in Canada, this study presents updated data from active surveillance of pneumococcal community acquired pneumonia (pCAP) and invasive pneumococcal disease (IPD) in hospitalized adults from 2010 to 2017. METHODS: S. pneumoniae was detected using culture (blood and sputum), and urine antigen detection (UAD). Serotyping was performed with Quellung, PCR, or using the PCV13- and PPV23 (non-PCV13)-specific UADs. Laboratory results, demographic, and outcome data were categorized by age (16-49, 50-64, and 65 + ) and by disease [non-bacteremic pCAP, bacteremic pCAP, and IPD(non-CAP)]. RESULTS: 11,129 CAP cases and 216 cases of IPD (non-CAP) were identified. Laboratory testing for S. pneumoniae was performed in 8912 CAP cases, identifying 1264 (14.2%) as pCAP. Of pCAP cases, 811 (64.1%) were non-bacteremic and 455 (35.9%) were bacteremic. Adults 65 + years represented 54.5% of non-bacteremic pCAP, 41.4% of bacteremic pCAP, and 48.6% of IPD cases. Adults 50-64 years contributed 30.3%, 33.1%, and 29.9%, respectively. In pCAP, PCV13 serotypes declined between 2010 and 2014 due to declines in serotypes 7F and 19A, then plateaued from 2015 to 2017 with persistence of serotype 3. In later study years, non-bacteremic pCAP was predominant, and PPV23 (non-PCV13) serotypes increased from 2015 to 2017, with serotypes 22F, 11A, and 9 N being most frequently identified. Compared to non-pCAP, pCAP cases were more likely to be admitted to intensive care units and require mechanical ventilation. These outcomes and mortality were more common in bacteremic pCAP and IPD, versus non-bacteremic pCAP. CONCLUSION(S): Along with IPD, pCAP surveillance (bacteremic and non-bacteremic) is important as their trends may differ over time. With insufficient herd protection from PCV13 childhood immunization, or use of PPV23 in adults, this study supports direct adult immunization with PCV13 or higher valency conjugate vaccines to reduce the residual burden of pCAP and IPD.


Assuntos
Infecções Comunitárias Adquiridas , Infecções Pneumocócicas , Pneumonia Pneumocócica , Pneumonia , Adulto , Canadá/epidemiologia , Criança , Infecções Comunitárias Adquiridas/diagnóstico , Infecções Comunitárias Adquiridas/epidemiologia , Humanos , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , Pneumonia Pneumocócica/diagnóstico , Pneumonia Pneumocócica/epidemiologia , Pneumonia Pneumocócica/prevenção & controle , Sorogrupo , Streptococcus pneumoniae , Vacinas Conjugadas
18.
Microbiol Spectr ; 10(1): e0245521, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35171010

RESUMO

Containment measures employed during the COVID-19 pandemic included prompt recognition of cases, isolation, and contact tracing. Bilateral nasal (NA) swabs applied to a commercial antigen-based rapid diagnostic test (Ag-RDT) offer a simpler and more comfortable alternative to nasopharyngeal (NP) collection; however, little is known about the sensitivity of this method in an asymptomatic population. Participants in community-based asymptomatic testing sites were screened for SARS-CoV-2 using an Ag-RDT with NP sampling. Positive individuals returned for confirmatory molecular testing and consented to repeating the Ag-RDT using a bilateral NA swab for comparison. Residual test buffer (RTB) from Ag-RDTs was subjected to real-time reverse transcription-PCR (RT-PCR). Of 123,617 asymptomatic individuals, 197 NP Ag-RDT-positive participants were included, with 175 confirmed positive by RT-PCR. Of these cases, 154 were identified from the NA swab collection with Ag-RDT, with a sensitivity of 88.0% compared to the NP swab collection. Stratifying results by RT-PCR cycle threshold demonstrated that sensitivity of the nasal collection method varied based on the cycle threshold (CT) value of the paired RT-PCR sample. RT-PCR testing on the RTB from the Ag-RDT using NP and NA swab collections resulted in 100.0% and 98.7% sensitivity, respectively. NA swabs provide an adequate alternative to NP swab collection for use with Ag-RDT, with the recognition that the test is most sensitive in specimens with high viral loads. With the high sensitivity of RT-PCR testing on RTB from Ag-RDT, a more streamlined approach to confirmatory testing is possible without recollection or use of paired collections strategies. IMPORTANCE Nasal swabbing for SARS-CoV-2 (COVID-19) comes with many benefits but is slightly less sensitive than traditional nasopharyngeal swabbing; however, confirmatory lab-based testing could be performed directly from the residual buffer from either sample type.


Assuntos
Antígenos Virais/análise , COVID-19/virologia , Portador Sadio/virologia , Nasofaringe/virologia , Nariz/virologia , SARS-CoV-2/isolamento & purificação , Manejo de Espécimes/métodos , Antígenos Virais/genética , Antígenos Virais/imunologia , Doenças Assintomáticas , COVID-19/diagnóstico , Teste Sorológico para COVID-19 , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Sensibilidade e Especificidade
19.
Microbiol Spectr ; 9(2): e0068321, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34668722

RESUMO

Antigen-based rapid diagnostics tests (Ag-RDTs) are useful tools for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. However, misleading demonstrations of the Abbott Panbio coronavirus disease 2019 (COVID-19) Ag-RDT on social media claimed that SARS-CoV-2 antigen could be detected in municipal water and food products. To offer a scientific rebuttal to pandemic misinformation and disinformation, this study explored the impact of using the Panbio SARS-CoV-2 assay with conditions falling outside manufacturer recommendations. Using Panbio, various water and food products, laboratory buffers, and SARS-CoV-2-negative clinical specimens were tested with and without manufacturer buffer. Additional experiments were conducted to assess the role of each Panbio buffer component (tricine, NaCl, pH, and Tween 20) as well as the impact of temperature (4°C, 20°C, and 45°C) and humidity (90%) on assay performance. Direct sample testing (without the kit buffer) resulted in false-positive signals resembling those obtained with SARS-CoV-2 positive controls tested under proper conditions. The likely explanation of these artifacts is nonspecific interactions between the SARS-CoV-2-specific conjugated and capture antibodies, as proteinase K treatment abrogated this phenomenon, and thermal shift assays showed pH-induced conformational changes under conditions promoting artifact formation. Omitting, altering, and reverse engineering the kit buffer all supported the importance of maintaining buffering capacity, ionic strength, and pH for accurate kit function. Interestingly, the Panbio assay could tolerate some extremes of temperature and humidity outside manufacturer claims. Our data support strict adherence to manufacturer instructions to avoid false-positive SARS-CoV-2 Ag-RDT reactions, otherwise resulting in anxiety, overuse of public health resources, and dissemination of misinformation. IMPORTANCE With the Panbio severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen test being deployed in over 120 countries worldwide, understanding conditions required for its ideal performance is critical. Recently on social media, this kit was shown to generate false positives when manufacturer recommendations were not followed. While erroneous results from improper use of a test may not be surprising to some health care professionals, understanding why false positives occur can help reduce the propagation of misinformation and provide a scientific rebuttal for these aberrant findings. This study demonstrated that the kit buffer's pH, ionic strength, and buffering capacity were critical components to ensure proper kit function and avoid generation of false-positive results. Typically, false positives arise from cross-reacting or interfering substances; however, this study demonstrated a mechanism where false positives were generated under conditions favoring nonspecific interactions between the two antibodies designed for SARS-CoV-2 antigen detection. Following the manufacturer instructions is critical for accurate test results.


Assuntos
Antígenos Virais/análise , Teste Sorológico para COVID-19/métodos , Água Potável/virologia , Alimentos/virologia , SARS-CoV-2/isolamento & purificação , Soluções Tampão , COVID-19/diagnóstico , Comunicação , Reações Falso-Positivas , Humanos , SARS-CoV-2/imunologia
20.
J Virol Methods ; 295: 114184, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34029634

RESUMO

With increasing demands for SARS-CoV-2 testing, as well as the shortages for testing supplies, collection devices, and trained healthcare workers (HCWs) to collect specimens, self-collection is an attractive prospect to reduce the need for HCWs and expenditure of personal protective equipment. Apart from the traditional nasopharyngeal swab used for SARS-CoV-2 detection, alternative specimens have been validated such as a combined swabs of the oropharynx and anterior nares (OP/N), or throat samples using saline gargles. Both the alternative specimen types are amenable to self-collection. Objectives. This study aimed to compare the sensitivity of HCW-collected (OP/N) swabs, self-collected OP/N swabs, and self-collected saline gargles. Among 38 individuals previously testing positive for SARS-CoV-2 (or their close contacts), two self-collected specimen types (OP/N and saline gargles) were compared to HCW-collected OP/N swabs. SARS-CoV-2 testing was performed on three molecular assays: a laboratory-developed test (LDT), and two commercial assays on automated platforms: Cobas 6800 (Roche Diagnostics) and Panther (Hologic). The sensitivity of self-collected OP/N swabs was equivalent to healthcare worker (HCW)-collected OP/N swabs at 100.0 % [92.6%-100.0%] for all three molecular tests. The sensitivity of saline gargles was not significantly different than HCW-collected OP/N swabs, but varied slightly between instruments at 93.8 % [85.9%-93.8%] for the LDT, 96.8 % [88.6%-96.8%] for the Cobas assay, and 96.7 % [89.2%-96.9%] for the Panther assay. Overall, self-collection using OP/N swabs or saline gargles are reasonable alternatives to HCW-based collections for SARS-CoV-2 detection, and could facilitate broader surveillance strategies.


Assuntos
COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , Manejo de Espécimes/métodos , Teste de Ácido Nucleico para COVID-19 , Pessoal de Saúde , Humanos , Cavidade Nasal/virologia , Orofaringe/virologia , SARS-CoV-2/genética , Saliva/virologia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...